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Abstract. Presented paper is a survey of many authors’ achievements in the research
subject matter concerning the permutations preserving the convergence or the sum of
series and the algebraic properties of the families of such permutations. The conver-
gence classes of divergent permutations will be also discussed. This survey has been
treated widely, however not exhaustive.
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1. Introduction

In classical Riemann Derangement Theorem about rearrangement of the condition-
ally convergent series the series is fixed and the rearranged series vary. In case when
we fix the permutation p on N and we variate the selection of conditionally conver-
gent series a number of new problems appear, including the problem concerning the
form of sets of limit points of the series rearranged by p, which is a dual issue to the
problem described in the above Riemann Derangement Theorem. This new problem
was solved by Nash-Williams and White [37] just in 1999. Simultaneously we note
that many special cases of this problem were discovered earlier [29, 66, 63].

Some other problems turned out to be interesting and essential as well, for example
the problem of combinatoric description of the convergent (divergent) permutations
or the permutations preserving the sum. Discussion of such problems is the object of
this paper, frame of which was given by my habilitation thesis [72].

Remark 1.1. This survey does not contain any constructions of permutations on N

distinguished and discussed in this paper, which can make the considered issues quite
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rough for the Readers not initiated into the subject matter. Remedy for this technical
problem can be the series of papers, perfectly supplementing this deficiency, which
I recommend to all the interested Readers (see [44, 52, 53, 60, 73, 79]).

2. Basic ideas and distinguished sets of permutations

Family of all permutations on N = {1, 2, 3, ...}, it means the bijections of the set of
natural numbers on itself, will be denoted by P. Permutation p ∈ P preserving the
convergence of all rearranged by p convergent series of real terms will be called the
convergent permutation. In other words, permutation p ∈ P is convergent if for each
convergent series

∑

an of real terms, the series
∑

ap(n) rearranged by permutation
p is convergent as well. Family of all convergent permutations will be denoted by
symbol C.

For the contrast, permutations belonging to set D := P \ C will be called the di-
vergent permutations. Thus, permutation p ∈ P is the divergent permutation if there
exists a convergent series

∑

an of real terms which is rearranged by permutation p

into a divergent series
∑

ap(n). Let us also introduce, after Kronrod [34], the following
families of permutations (I have distinguished these families independently in 90’s,
without knowing the Kronrod’s work):

– CC and CD are the subfamilies of C composed of permutations p called the two-
sided or one-sided convergent permutations in dependence on that, whether the
inverse permutation p−1 is convergent or divergent, respectively,

– DC and DD are, by analogy to CC and CD, the subfamilies of D of permutations
p called the two-sided or one-sided divergent permutations in dependence on that,
whether permutation p−1 is convergent or divergent.

Moreover, we indicate permutations p ∈ P preserving the sum, it means satisfying
the condition: for each convergent real series

∑

an if the series
∑

ap(n) rearranged by
p is convergent, then it preserves the sum, that is

∑

ap(n) =
∑

an. Henceforward we
will denote by the same symbol

∑

an the series, it means the appropriate sequence of
partial sums as well as its sum, if only the given series is convergent. The proper inter-
pretation will depend on the context of discussion. Family of permutations preserving
the sum will be denoted by symbol S. Permutations belonging to set I := P \S will
be called the substantially singular permutations. Thus, each substantially singular
permutation p ∈ P rearranges some convergent series

∑

an of real terms into series
∑

ap(n) convergent as well, but of changed value of the sum, it means
∑

ap(n) 6=
∑

an.
We distinguish also some important for further discussion subfamily F of family

S. We say that permutation p ∈ P belongs to F, if there exists a finite partition
N1, N2, . . . , Nn(p) of the set of natural numbers such that the restrictions p

∣

∣

Ni
, i =

1, 2, . . . , n(p), are the increasing maps. One more auxiliary idea will be essential for
further discussion. We say that the finite and nonempty set A ⊂ N is a union of k
mutually separated intervals, in short: k msi, if there exists partition I1, I2, . . . , Ik of
set A composed from k intervals (segments) of natural numbers, it means from the sets
of successive natural numbers such that dist(Ii, Ij) > 2 for any i, j = 1, 2, . . . , k, i 6= j.
For convenience we will also say the given set A ⊂ N or a few of sets A1, . . . , Ar ⊂ N
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are the unions of at most n msi for some n ∈ N, if each of them is a union of k(A)
msi or, respectively, of k(A1) msi, k(A2) msi,. . ., k(Ar) msi and all these numbers
are not greater than n. Number n plays here a role of majorant of the given set of
numbers. We say that the given sequence {An} of finite and nonempty subsets of N is
increasing if An < An+1 for every n ∈ N and we write A < B if a < b for any a ∈ A,
b ∈ B, where A,B ⊂ N are the nonempty sets. Notation A ⊂ B will be used only in
case of strict inclusion.

3. Selected algebraic properties of the distinguished sets of

permutations

We say that family A ⊂ P is algebraically small if P \ G(A) 6= ∅, where G(A)
is a group of permutations generated by A. Next, we say that family A ⊂ P is
algebraically big if A◦A = P, where operation ◦ of composition of two nonempty sets
of permutations A and B is defined as follows

A ◦B := {p ◦ q : p ∈ A and q ∈ B},

whereas p ◦ q(n) := p(q(n)), n ∈ N. Families A ⊂ P which are neither algebraically
small nor algebraically big will be called as the sets algebraically medial. There exist
the sets of generators of P which are the sets algebraically medial [70]. Let us also
note that

– family C is algebraically small (Pleasants [43, 44]),
– families S and I are algebraically big (Kronrod [34] Pleasants [43], Witu la [68], in

fact we know many algebraically big subsets of family S – some of them will be
presented in the further parts of this survey),

– families DC i CD are semigroups (Witu la [65, 74]), more precisely we have Φ◦Φ = Φ

for each Φ ∈ {DC,CD,C,C−1},
– family DD is algebraically big (Witu la [65]),
– I proved that (see [65, 74]):

DC ◦DD = DD ◦DC = DC ∪DD = D

and
CD ◦DD = DD ◦ CD = CD ∪DD = D−1.

Also the following equalities1 DDk ◦DDl = P are satisfied for any k, l ∈ N, k, l > 2
(Witu la [70]), where Ak := {pk : p ∈ A} for any nonempty A ⊂ P and pk denotes
the k-fold composition of p with itself (thus, symbol of type DDk will denote the kth

power of set DD, it means (DD)k). Moreover we have DD \
∞
⋃

k=2

DDk 6= ∅, but it is

unknown whether the equality
∞
⋃

k=1

DDk = P holds. Family CC is a group with regard

1 Remark. Identified here the algebraically big sets S and DD I can decompose into countably
many algebraically big subsets. However I do not know whether it is true for each algebraically big
subset of family P.
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to composition of mappings and plays the role of unity with regard to operation ◦ for
many from among sets discussed here. More precisely, we have [68, 74]:

CC ◦ A = A ◦ CC = A

for A ∈ {CC,C,C−1,CD,D,DC,DD,S0} (definition of family S0 will be given on
page 175). One can easily verify that family CC is the maximal, with regard to in-
clusion, group of permutations included in C. Next, from the fact that CD is the
semigroup, it results in particular that set CC contains all the torsion elements of
semigroup C. The family τC of torsion elements of this semigroup is a normal quo-
tient of group CC and, which is more, of the infinite index (more precisely, index
|CC : τC | = c). We have similar result for the subgroup τ of torsion elements of group
P. Certainly τC ⊂ τ and τ ∩DD 6= ∅. Furthermore, we have here a number of un-
solved problems like, for instance, whether τC (τ respectively) is the maximal, with
regard to inclusion, normal subgroup in CC (in P respectively).

E.H. Johnston [31] introduced interesting subgroup R of group CC, composed from
permutations p ∈ P satisfying condition: sup{card(I \ p(I)) : I ⊂ N is an interval} <
∞.2 One can show that R is not the normal subgroup of group CC (Johnston proved
this fact only for group P). One can also prove that CC is not the normal sub-
group in semigroup C (it means, there exists τ ∈ C such that τCCτ−1 ∩ D 6= ∅) –
G.S. Stoller [56]. I have generalized this fact importantly by proving relations (see
[71]):

(pCCq) ∩DD 6= ∅ and (qCCp) ∩DD 6= ∅

for any p ∈ (CD ∪DD) and q ∈ D. Additionally, I have proven that for any permu-
tation p ∈ P we have

pDp−1 ⊆ D ⇔ p ∈ CC and pDDp−1 ⊆ DD ⇔ p ∈ CC,

where if p ∈ CC then the above inclusions turn into equalities (see [71, Th. 2.7]).3

4. Selected characterizations of convergent and divergent

permutations

A number of various characterizations of convergent, divergent and other permuta-
tions are known – see among others [22, 26, 35, 43, 49, 51, 52, 53, 57]. Let me present
few of them:

– p ∈ C if and only if there exists constant k = k(p) ∈ N such that the set
p([1, n] ∩ N) is a union of at most k msi for each n ∈ N (in other words, if

2 Remark. Różański et al. [46] have completed the description of elements of subgroup R on the
basis of the following equivalence relations ̺ defined on family b+ of the bounded sequences of positive
real numbers: {an}̺{bn} ⇔ for every increasing sequence of positive integers {nk} the series

∑

ank

and
∑

bnk
are simultaneously convergent or divergent.

3 Remark. Existence of divergent permutations (two-sided divergent permutations, respectively) in
sets τRτ−1, τ ∈ C, pRq, p ∈ CD and q ∈ DC, remains problematic, where R is the group introduced
by Johnston.
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C CC S S0 G

CC ∩ F D(1) C2 ∪ D2

CD S0 \ G F ⊂ C2 ⇒ DD ∩ G 6= ∅

D2 F \ D2 6= ∅ ⇒ C2 \ D2 6= ∅

CD ∩ F D(1) \ G

P D DC

D(1) ∩ DC

F ∩ DC

DD

I

D(1) ∩ DD

F ∩ DD F ∩ I

All sets displayed in the table are nonempty. In some blocks with the aid of smaller types there
are indicated selected subsets of sets presented at the top of these blocks. Case when the vertical
side of some block is included in the vertical side of another block denotes the appropriate inclusion
between sets displayed at the top of these blocks. Inclusions S0 ⊂ G and S ⊂ G are the hypotheses
formulated by me.

lim sup
n→∞

t(p, n) 6 k, that is, when lim sup
n→∞

t(p, n) < ∞, where t(p, n) denotes the

number of msi partitioning set p([1, n])), R.P. Agnew (1955) [2], N. Bourbaki
(1951) [9],

– p ∈ D ⇔ lim sup
n→∞

t(p, n) = ∞ (characterization dual to the previous one),

– p ∈ D if and only if for any r, s ∈ N there exists the increasing sequence of
natural numbers {xn}2rn=1 spliced by p, such that x1 > s and each of two following
sequences {p(xn)}rn=1 and {p(xn+r)}rn=1 is monotonic (one can also assume that
min{p(xn)}2rn=1 > s), Witu la (1995) [80, 66].

Remark 4.1. An increasing sequence {xn}2rn=1 of positive integers is spliced by p if
the increasing sequences composed from elements of sets {p(xn) : n = 1, . . . , r} and
{p(xn+r) : n = 1, . . . , r} are alternating. We say that increasing sequences of natural
numbers: y1, y2, . . . , yr and z1, z2, . . . , zr are alternating if y1 < z1 < y2 < z2 < . . . <

yr < zr or z1 < y1 < z2 < y2 < . . . < zr < yr.

It should be emphasized that the idea of splicing is connected with any divergent
permutation which is justified by sequences, assigned to these permutations, conglom-
erating intervals and growing the numbers of intervals (see Section 7). Moreover, by
using properties of these sequences one can prove the characterization of divergent
permutation presented in here (see Remark 7.7), in the way alternative to proofs from
papers [80, 66].

– p ∈ C if and only if there exists r ∈ N such that for each increasing sequence
{xn}

2N
n=1 of natural numbers spliced by p the inequality N 6 r holds (this charac-

terization is dual to the previous characterization restricted only to the condition
of splicing the sequence {xn}2rn=1 by p).

First of the above four characterizations introduced by Bourbaki and Agnew has been
generalized by me into functions f : N → N preserving convergence of the convergent
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real series rearranged by them4 (see [64]). Functions of that kind will be shortly called
the convergent functions and their description, discovered by me, is the following.

Function f : N → N is the convergent function if and only if there exists a natural
number t = t(f) such that for each interval I ⊂ N there exists a partition I1, I2, . . . , Is
of interval I possessing the following properties:

1) s 6 t,
2) all restrictions f

∣

∣

Ii
, i = 1, 2, . . . , s, are injections,

3) each of sets f(Ii), i = 1, 2, . . . , s, is a union of at most t msi.

Remark 4.2. The above description implies that the convergent functions, and in
particular the convergent permutations, with respect to the series in any normed space
(and even in any linear-topological space) are functions (permutations, respectively)
preserving the Cauchy condition. It is important, among others, since the con-
vergent permutations preserve also the sums of convergent series rearranged by them,
whereas the convergent functions, which are not the permutations of the set of natural
numbers, do not possess this property any more!

Remark 4.3. Characterization of the convergent functions, introduced by me, and
the above remark can be transferred without changes onto the vector series in the
normed spaces, as well as generally in the linear-topological spaces, over the fields of
characteristic zero.

Remark 4.4. Professor Lech Drewnowski in paper [18, Lemmas 4.4, 4.5 and Prop.
4.6] discusses many equivalent characterizations of convergent functions and, what
is the most essential, he proves that they characterize the functions preserving con-
vergence of the series and, independently, the functions transforming the convergent
series (bounded series, respectively) into the bounded series and the functions trans-
forming the Cauchy sequences into the Cauchy sequences, etc. in the linear-topological
spaces and even in the normed F -spaces.

Remark 4.5. M.A. Sarigöl [51] has presented the characterization of permuta-
tions p ∈ P preserving the property of bounded variation of scalar sequences
(these are exactly the permutations, the inverse permutations of which are conver-
gent). Drewnowski in paper [18] has generalized this characterization onto functions
f : N → N and in case of permutations also onto the sequences of bounded variation
in the linear-topological spaces and in the normed F -spaces. In particular, I have
noticed here an intriguing result (not recorded either in paper [51] or in paper [18]):
if p ∈ P and lim sup

n→∞
|p−1(n+ 1) − p−1(n)| <∞, then p ∈ C (see [18, Prop. 6.3]).

5. Family S0 of permutations preserving the sum

Till the last year I was convinced that the combinatoric characterization of per-
mutations preserving the sum was still unknown. It was the reason for preparing
paper [68] in which I have distinguished the following family S0 of permutations

4 Function f : N → N will be called the function preserving convergence of the (real) series if for
each convergent series

∑

an of real terms the series
∑

af(n) is convergent as well.
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on N. We say that permutation p ∈ P belongs to S0 if there exists a natural number
k = k(p) such that for each n ∈ N the nonempty finite sets An, Bn ⊂ N exist and
satisfy the conditions:

1) p(An) = Bn,
2) [1, n] ⊂ An,
3) each of sets An and Bn is a union of at most k msi.

By using the Cauchy condition one can easily verify that S0 ⊆ S and I formulated
the conjecture that the equality S0 = S holds, however I could not prove it (in next
subsection it will appear that in 1999, and this date is not a mistake, this conjecture
was proved true by Nash-Williams and White – see [37]). I based this conjecture on
the following reason. All the known till now examples of permutations preserving the
sum are the permutations belonging to S0. One can find here the really nontrivial
constructions, like for example given in paper [29] the construction of permutation
p ∈ S0 such that

lim
n→∞

t(p;n) = lim
n→∞

t(p−1;n) = ∞, (1)

where for each n ∈ N symbol t(p;n) denotes the number of msi partitioning set
p([1, n]).

Remark 5.1. Condition (1) is connected with one more interesting characterization,
this time of permutations p ∈ P rearranging some convergent real series

∑

an into
series

∑

ap(n) divergent to ∞. Hu and Wang in the mentioned paper [29] have proven
that the necessary and sufficient condition, under which this fact is happening for
given permutation p ∈ P, is that lim

n→∞
t(p;n) = ∞.5

I have proven the above characterization of Hu-Wang independently in paper [66],
and I am convinced that the proof given by me is more intelligible.

In paper [68] I have proven many algebraic and combinatoric properties of fam-
ily S0. Let me begin with the condition guaranteeing that p ∈ S0, namely:
lim inf
n→∞

t(p;n) < ∞. It is not in the least the necessary condition, which results from

the previously given example by Hu-Wang (see condition (1)).
I present now the collection of selected algebraic relations for family S0 (on the

basis of Theorem 2.4 in paper [68]):

(i) S−1
0 = S0 which is compatible with equality S−1 = S

(both equalities result from the definitions of families S0 and S, respectively).

Remark 5.2. If G ⊂ P is a group and G 6= P then (P\G)−1 = P\G, G◦ (P\G) =
(P \G) ◦G = P \G, but either S0 or S are not groups, since both of them are the
algebraically big sets.

(ii) C ∪ C−1 ⊂ S0 and S0 ∩DD 6= ∅

(the comment is required for the second relation resulting easily from inclusion
D(1) ⊂ S0, where D(1) is the family of such permutations p ∈ D for which
p([1, n] ∩ N) = [1, n] ∩ N for infinitely many n ∈ N, it means fulfilling condition

5 Despite of the appearances, constructing such permutation is not difficult – essential detail of this
construction is described in item (v) of Lemma 7.1 in Section 7.
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lim inf
n→∞

t(p, n) = 1. Family D(1) is algebraically big, which is already proven by

G.S. Stoller [56]. Additionally I have proven that D(1) ◦ I = I ◦ D(1) = P –
Theorem 2.7 in paper [68]).

(iii) C◦S0 = S0 ◦C−1 = S0 and (CD◦S0)∪(S0◦DC) ⊂ S0 ⊂ (DC◦S0)∩(S0 ◦CD)
(let us recall that family CC is unity with regard to operation ◦ for many of
discussed here families of permutations. Bigger with regard to inclusion families
C or C−1, as it can be seen, satisfy the rule of one-sided unities, since we have

C ◦S = S ◦ C−1 = S, CD ◦ C = CD, C−1 ◦DC = DC,

where DC∪CD ⊂
(

C◦CD∩C−1 ◦DC
)

. Moreover, I have proven that S◦CC = S

and I ◦ CC = I).
(iv) CD ◦S0 ◦DC ⊂ S0 ⊂ DC ◦S0 ◦ CD

(similarly like the second one from among relations (iii), also the above relation
shows well the subtle set-theoretic difference between the occuring sets, whereas
the qualitative nature of these differences needs still to be investigated),

(v) D2 ⊂ S0 and C2 ∩ I 6= ∅, which implies that D3 ∩ I 6= ∅, where C1 := CD,
D1 := DC, Ck+1 := Dk ◦ C, Dk+1 := Ck ◦ D for each k ∈ N. It is known that
Ck ⊆ Ck+1, Dk ⊆ Dk+1, Dk ∪ Ck ⊆ Dk+1 ∩ Ck+1 for each k ∈ N and, what is
the most important,

⋃

k∈N

Ck =
⋃

k∈N

Dk = G, where, let us recall, G is the group of

permutations generated by family C (see [68]). We already know that C2\D2 6= ∅

(see [68, 71]]), however we do not know whether family C2 \S0 is algebraically
big. I have proven, independently of Kronrod, that set I = D \S is algebraically
big [68, Theorem 2.7]. Still unknown is also the answer to question whether there
exists k ∈ N such that Dk = Dk+1 or Ck = Ck+1 ( let us note that such equality
implies that, respectively, Dk = Dk+l = Ck+l or Ck = Ck+l = Dk+l for each l ∈
N). I have proven as well that family P\G is algebraically big and D(1)\G 6= ∅6

(see [77]). In particular, it implies that {g} ◦ (P \G) = (P \G) ◦ {g} = P \G for
any permutation g ∈ G. These equalities hold also for any group G ⊂ P (taken
in place of group G), such that P \G is algebraically big. In reference to item (i)
let us additionally notice that equalities C−1

2k = C2k, D−1
2k = D2k, C−1

2k−1 = D2k−1

and D−1
2k−1 = C2k hold for every k ∈ N.

Another important fact should be also emphasized, namely, that permutations

p ∈ S are the only functions f : N → N preserving the sum of series rear-

ranged by them. In other words, if for the given convergent real series
∑

an the
f -rearranged series

∑

af(n) is convergent as well and
∑

af(n) =
∑

an, then function
f is a permutation. Proof of this fact, by contradiction of thesis, can be immediately
generalized onto the vector series in any nontrivial normed space (one should dis-
cuss separately the spaces over the fields of characteristic zero and over the fields of
characteristic different than zero – see [64]).

6 In paper [71] the example (Example 1) of permutation p ∈ D(1) \ (C2 ∪D2) is given, which is the
slightly weaker relation. Whereas, it is noticed there (Remark 2.4) that card(D(1) \ (C2 ∪D2)) = c.
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Nash-Williams and White’s exciting papers. Equality S0 = S holds

Last year (more precisely in October 2013), when I was preparing my lecture for
presenting my habilitation thesis in the  Lódź University, I read again paper [37] by
Nash-Williams and White concerning the form of cluster set of the sequence of partial
sums of

∑

ap(n), i.e. the convergent real series rearranged by a given permutation
p ∈ P. I noticed almost immediately (which surprised me extremely) that this paper
contains the positive solution of my conjecture claiming that relation

S0 = S

is true. Nash-Williams and White proved the following theorem.

Theorem 5.3. Permutation p ∈ P preserves the sum of rearranged series if and only
if the width of p is finite (the width of permutation p ∈ P is a fundamental conception
introduced by Nash-Williams and White in paper [37]) or, equivalently, if and only if
p ∈ S0.

We note that a proper part of this fact, i.e. the implication: if the width of p is finite
then p ∈ S0 is formulated in Proposition 2.2 of [37]. Let us emphasize that Nash-
Williams and White in paper [37] do not recall the definition or even the conception
of permutations preserving the sum which was certainly the reason of not noticing,
by myself and other readers, the characterization of permutations preserving the sum
described in Section 5. We also note that next papers [38, 39], published by the same
authors, concern the generalizations of theorems contained in [37] onto the series in
finitely dimensional spaces. All three papers [37, 38, 39] made by Nash-Williams and
White are, with no doubts, the very important events in the discussed subject matter.

6. Family of permutations decomposable into the finite sum of

increasing maps

Subject matter of my research was also the family of permutations F ⊂ P, original
against a background of previously discussed families, composed from permutations
p ∈ P for which there exists the finite partition N1, N2, . . . , Nn(p) of the set of natural

numbers such that p
∣

∣

Ni
is the increasing map for each i = 1, 2, . . . , n(p). Definition of

family F implies also another, dual characterization of permutations belonging to F.
So, permutation p ∈ P belongs to F if and only if the value of

k(p) := sup{card(A) : ∅ 6= A ⊂ N and p
∣

∣

A
is decreasing map}

is finite (see [73, Theorem 7]). Certainly F is the group of permutations (see [73,
Theorem 2]).

However, the connection between family F and the convergent or divergent permu-
tations is not noticeable directly, since it is located at the level of superpositions of
convergent permutations, it means within families C2 = DC ◦CD and D2 = CD ◦DC.
One can prove that F ⊂ C2 which implies also that DC ◦ F ◦ CD ⊂ C2 (see [73,
Conclusion 1]), and one can give the example of permutation p ∈ F \ D2 (see [73,
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Example 1]). Inclusion F ⊂ C2 results from the definitely more generally formulated
theorem (see [73, Theorem 4]):

Theorem 6.1. Let p ∈ F and let l(p) denote the smallest natural number such that:
for each, sufficiently big n ∈ N, there exists the partition N(n) of set {k ∈ N : k > n}
with l(p) = cardN(n), such that p

∣

∣

N
is the increasing map for each N ∈ N(n). Then

there exists the convergent permutation q satisfying conditions:

qp ∈ C, c∞(q) 6 4l(p) + 1 and c∞(qp) 6 2l(p) + 1,

where

c∞(p) = lim
n→∞

(

sup{c(p, I) : I ⊂ N is the bounded interval such that min I > n}
)

,

whereas c(p, I) denotes the number of mutually separated intervals creating the parti-
tion of set p(I).

Coefficients, appearing here, can be successfully applied for more subtle formulation
of many relations, also these ones previously given by me.

Moreover, I would like to emphasize that within many of discussed here families
of permutations, the elements of family F are spred out almost everywhere, in such
sense that ([73, Theorems 3 and 6]):

– F∩A 6= ∅ for each of four two-sided families A ∈ {CC,CD,DC,DD}, and even for
A = I (see Remark 3, [73]),

– A\F 6= ∅ for each A ∈ {CC,CD,D(1)∩DC,D(1)∩DD, (D(2)\D(1))∩DC, (D(2)\
D(1))∩DD,D(1)∩C2∩D2}, where D(2) := {p ∈ D : lim inf

n→∞
t(p, n) = 2}. However,

I do not know whether F \A 6= ∅ for each one of sets A mentioned above.

Family F can be also used for strengthening the presentation of the Riemann
Derangement Theorem (by the way this result comes from the Riemann’s post-
doctoral dissertation entitled “Über die Darstellbarkeit einer Funktion durch eine
trigonometrische Reihe”, see [25, p. 232]). In paper [73] I have presented two of such
theorems (Theorems 9 and 10) generalizing the Kronrod’s results from paper [34] (see
also [45, 21]). So, I have proven that for any conditionally convergent series

∑

an of
real terms and closed interval I ⊂ R ∪ {±∞} there exist permutations p ∈ F and
q ∈ P \ F, such that the set of limit points of every series

∑

ap(n) and
∑

aq(n) is
equal to I. In paper [67] similar result can be found but for permutation p ∈ DD,
and in case when

∑

an ∈ I or when I = [α,∞] or I = [−∞, β], α < ∞, β > −∞,
α, β ∈ R ∪ {±∞}, for permutation q ∈ DC with additional condition c(q−1) 6 5
(which may be strengthened to c(q−1) 6 3, when

∑

an ∈ I). Definition of number
c(ϕ), ϕ ∈ C, is given on page 182. Let us noticed that c∞(ϕ) 6 c(ϕ), ϕ ∈ C.

We note also that J.H. Smith in [55] considers the selection of permutations p in
the Riemann Derangement Theorem with the predetermined decomposition of p into
cycles.
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7. Sequences conglomerating intervals and growing the

numbers of intervals

Let p ∈ P and let σ(t(p, ◦)) denote the set of limit points of sequence {t(p, n)}∞n=1

with regard to topology of the 2-points compactification of set R with the standard
topology, in other words σ(t(p, ◦)) is derivative of this sequence. Then the following
relations hold true.

Lemma 7.1.

(i) {t(p, n)}∞n=1 ⊂ N and t(p, n+ 1) − t(p, n) ∈ {−1, 0, 1}, for every n ∈ N,
(ii) set σ(t(p, ◦)) is the closed interval ⊂ N ∪ {∞}, more precisely we have

σ(t(p, ◦)) = [lim inf
n→∞

t(p, n), lim sup
n→∞

t(p, n)],

(iii) if card(σ(t(p, ◦))) = 1 then either p is the almost identity permutation on N or
σ(t(p, ◦)) = {∞}, that is lim

n→∞
t(p, n) = ∞,

(iv) 1 ∈ σ(t(p, ◦)) if and only if lim inf
n→∞

t(p, n) = 1, if we assume additionally that p

is divergent, then 1 ∈ σ(t(p, ◦)) if and only if p ∈ D(1),
(v) if there exists an increasing sequence {xn}∞n=1 of natural numbers such that

lim sup
n→∞

(xn+1 − xn) <∞ and lim
n→∞

(p(xn+1) − p(xn)) = ∞,

then
lim
n→∞

t(p, n) = lim
n→∞

t(p−1, n) = ∞.

(vi) If A and B are any closed intervals of the form [k, l], [k,∞] or [∞], where k, l ∈
N, k < l, then there exists permutation p ∈ P such that σ(t(p, ◦)) = A and
σ(t(p−1, ◦)) = B.

Remark 7.2. Property (v) plus the combinatoric characterization of permutation
p ∈ S0 enable to give easily the previously cited construction of permutation from
paper by Hu and Wang [29]. The matter is just the idea of this construction.

Let us now assign to permutation p two auxiliary sets (t(p, 0) := 0):

U(p) := {u ∈ N : t(p, u) − t(p, u− 1) = 1}

and
V(p) := {v ∈ N : t(p, v) − t(p, v − 1) = −1}.

Lemma 7.3 (see [66]).

(i) If p ∈ D, then the sets U(p) and V(p) are infinite. More precisely, if at least one
of these sets is finite then the other one is finite as well, whereas p is then the
almost identity permutation.

(ii) If we denote by I
(p)
i,n , i = 1, 2, . . . , t(p, n) the sequence of msi creating the partition

of set p([1, n]) for each n ∈ N then
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card(p−1(I
(p)
i,n ) ∩ U(p)) − card(p−1(I

(p)
i,n ) ∩V(p)) = 1

for each i, n ∈ N, i 6 t(p, n).
(iii) card([1, n] ∩ U(p)) − card([1, n] ∩V(p)) = t(p, n) for each n ∈ N.

Let us assume additionally that permutation p ∈ P is not the almost identity
permutation (in particular, it can be the divergent permutation). Then the sets U(p)
and V(p) are infinite and the increasing sequences of all elements of sets p(U(p)) and
p(V(p)) will be denoted by {un(p)}∞n=1 and {vn(p)}∞n=1, respectively, and called the
sequences growing the numbers of intervals and conglomerating the intervals (ade-
quately to their properties).

Lemma 7.4 (see [66]). We have

un(p) < vn(p) < un+1(p) and p−1(un(p)) < p−1(vn(p))

for each n ∈ N.

I have also proven that (see [66]):

Theorem 7.5. If {xn}∞n=1 is the increasing sequence of natural numbers then there
exist permutations p ∈ DC and q ∈ DD satisfying conditions

lim
n→∞

t(ϕ, n) = ∞

and
ϕ(U(ϕ)) = {x2n−1}

∞
n=1 and ϕ(V(ϕ)) = {x2n}

∞
n=1

for each ϕ ∈ {p, q}.

Remark 7.6. The above theorem is the strengthened version of Theorem 5.3 from
paper [66]. The proof is given in paper [75].

Remark 7.7. By using properties (ii) and (iii) from Lemma 7.3 we can prove
the previously given characterizations of divergent permutations connected with the
idea of splicing the sequences. For example, let p ∈ D and k ∈ N. There exists

n ∈ N such that t(p, n) > k. We select an element xi from each interval I
(p)
i,n for

every i = 1, 2, . . . , t(p, n). Assuming that I
(p)
i,n < I

(p)
i+1,n, i = 1, 2, . . . , t(p, n) − 1,

we obtain that the sequence {xi}
t(p,n)
i=1 is increasing. We also select elements y∗i ∈

p−1((max I
(p)
i,n ,min I

(p)
i+1,n)), i=1, 2, . . . , t(p, n)−1 and y∗t(p,n)∈ p−1((max I

(p)
t(p,n),n,∞)).

Let {xi}
2t(p,n)
i=1+t(p,n) be an increasing sequence composed from elements y∗i , i =

1, 2, . . . , t(p, n). Certainly the sequence {xi}
2t(p,n)
i=1 is spliced by p. Application of

the Erdős-Szekeres Theorem7 [80] enables to assume additionally that sequences

{p(xi)}
t(p,n)
i=1 and {p(xi)}

2t(p,n)
i=1+t(p,n) are both monotonic.

7 Remark. In paper [80] several essential supplements for the Erdős-Szekeres Theorem are also pre-
sented. For example, it has been revealed that the existence of increasing or decreasing subsequence
composed from three successive elements of investigated sequence, it means the monotonic subse-
quence of the form {ak , ak+1, ak+2}, is of great importance for discussing problems of that kind.
A part of discussed there problems can be described in the language of theory of “pattern avoiding
permutations” (see [7, 11]).
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Remark 7.8. Sets U(p) and V(p) can be also used for constructing the convergent real
series

∑

an, the p-rearrangements of which possess the set of limit points determined
in advance. For instance, in paper [66, Theorem 4.4] the following result is proven:

Theorem 7.9. Let {pi}∞i=1 ⊂ D and lim
n→∞

t(pi, n) = ∞ for every i ∈ N. If permuta-

tions pi, i ∈ N, possess the identical sequences growing the numbers of intervals and
conglomerating the intervals, then for each α ∈ R there exist the series

∑

an and
∑

bn of real numbers satisfying conditions:

(1)
∑

an =
∑

bn = α,

(2)
∞
∑

n=1
api(n) = ∞, for each i = 1, 2, . . .,

(3) set of limit points of every series
∞
∑

n=1
bpi(n), i = 1, 2, . . . is equal to [α,∞].

8. Relations between the convergence classes of permutations

on N

Convergence class of permutation p ∈ P is the family of all the convergent series
∑

an of real terms, such that the p-rearranged series
∑

ap(n) is convergent as well.
Convergence class of given permutation p ∈ P will be denoted by symbol

∑

(p).
Certainly if p ∈ C then

∑

(p) is the family of all convergent real series. Therefore,
from theoretical point of view, only the convergent classes of divergent permutations
can be interesting.

I have considered many various problems concerning this subject. For example, in
paper [79] I have introduced the idea of strongly and weakly divergent permutations
p ∈ D in dependence on that whether they fulfil the condition, respectively:

lim
n→∞

t(p, n) = ∞, or lim inf
n→∞

t(p, n) <∞.

In other words, permutation p ∈ D is strongly divergent if it rearranges some con-
vergent real series into the series divergent to ∞, whereas p ∈ D is weakly divergent
if it belongs to some D(k), k ∈ N, where D(k) := {p ∈ D : lim inf

n→∞
t(p, n) = k}, it

means if for each convergent real series
∑

an the sum of series
∑

an in the set of
limit points of

∑

ap(n) can be found. So, p ∈ D is weakly divergent if and only if
p ∈

⋃

k∈N

D(k). Family
⋃

k∈N

D(k) has been introduced by Kronrod [34], however he did

not distinguish families D(k), k ∈ N, separately. Let us also notice that the weakly
divergent permutations are simultaneously the sum preserving permutations since
⋃

k∈N

D(k) ⊂ S0.
8

8 I prove in [63, Section 2] that if p ∈ D(k) for some k ∈ N and
∑

an is a conditionally convergent
series such that the set of limit points of series

∑

ap(n) is equal to [α, β] ⊂ R, then k(α− β) + β 6
∑

an 6 k(β − α) + α. Hence it follows that the intervals [α, β] with k(β − α) + α <
∑

an or
k(α − β) + β >

∑

an cannot be the sets of limit points of series
∑

ap(n) for any p ∈ D(k). We
note also that Kronrod [34, Theorems 6, 6a, 7] shows that if p−1 is a weakly divergent permutation,
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Let me begin the problem concerning mutual relations between the convergence
classes of strongly and weakly divergent permutations with the following fact. There
exist the strongly divergent permutation p and the weakly divergent permutations q1
and q2 fulfilling relations

∑

(q1) =
∑

(p) and
∑

(q2) ⊂
∑

(p),

– see Example 2 in paper [79]. I have proven (see [79, Theorem 1]) that for each
strongly divergent permutation p there exists a weakly divergent permutation q such
that

∑

(q) ⊆
∑

(p) and, under some additional assumptions about permutation p,
there exist the weakly divergent permutations q1 and q2 fulfilling the relations as in
the example given above.

In paper [79] there is also proven that for each strongly divergent permutation
p ∈ DC there exists a weakly divergent permutation q, such that

∑

(p) =
∑

(q).
Moreover, an example of strongly divergent permutation p ∈ DC is given. This ex-
ample essentially completes the example from paper [29], i.e. the strongly divergent
permutation, the inverse permutation of which is strongly divergent as well.

The next problem concerning the convergence classes is connected with a question
about the possibility of restricting or expanding the convergence class of the given
divergent permutation – it appears that it is always possible and not uniquely at all.
I will precede the discussion by an example showing the subtleness of such operations.
In paper [81] I have given the example of permutations p, q ∈ D(1) such that if

∑

(p)∪
∑

(q) ⊆
∑

(σ) then σ ∈ C. Simultaneously, set
∑

(p) ∩
∑

(q) is the convergence class
of some permutation from D(1). Analyzing the construction of these permutations
p, q, I have noticed that one of the following three conditions: p, q ∈ DC or p ∈ DC

and q ∈ DD or p, q ∈ DD can be additionally assumed here.
We consider now the thread of restrictions – expansions of the convergence class

of given permutation p ∈ D. In paper [81] – fifth section, there is introduced a family
Ω ⊂ D,9 DC ⊂ Ω and DD∩Ω 6= ∅ such that for any permutation p ∈ Ω there exists
a subset Ω(p) ⊂ Ω, card(Ω(p)) = c satisfying two basic conditions:

∑

(p) ⊂
∑

(ϕ)

for each ϕ ∈ Ω(p) and any two permutations ϕ, ψ ∈ Ω(p) are incomparable, which
will hereafter mean that

∑

(ϕ) \
∑

(ψ) 6= ∅ and
∑

(ψ) \
∑

(ϕ) 6= ∅.

In particular, if p ∈ DC then also Ω(p) ⊂ DC and one can assume that c(ϕ−1) 6

4c(p−1) + 1 for each ϕ ∈ Ω(p), where

∑

an = ∞ (or −∞) and series
∑

ap(n) is convergent to some point from R ∪ {±∞} then we have
|
∑

ap(n)| = ∞.
9 Permutation p ∈ P belongs to Ω if there exists an increasing sequence {In(p)}∞n=1 of intervals
satisfying three conditions: sequence {p−1(In(p))}∞n=1 is increasing as well, there exists constant
k = k(p) ∈ N such that each of sets p−1(In(p)) is a union of at most k msi and, moreover, one can
indicate sequence {Jn}∞n=1 of intervals such that Jn ⊂ p−1(In(p)) and lim

n→∞
c(p, Jn) = ∞.
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c(q) := sup{c(q, I) : I ⊂ N is the bounded interval}

for any convergent permutation q. Study of the proof of these relations given in paper
[81] implies that one can always suppose that only weakly divergent permutations
belong to Ω(p).

I have announced in paper [69] one more result (Theorem 6.1): if p ∈ DC then
there exists family Ω(p) ⊂ DC, card(Ω(p)) = c, incomparable internally (which will
denote, by virtue of definition, that any two different permutations belonging to this
family are incomparable) and such that (the proof is presented in [78]):

∑

(p) ⊂
⋂

ω∈Ω(p)

∑

(ω).

Remark 8.1. There exist many unexpected relations (including the inclusions)
connected with the one-sided divergent permutations. Even a single thing, that if
p, q ∈ DC then

∑

(pq) ⊂
∑

(p)

which means in consequence that, for example

∑

(pn+1) ⊂
∑

(pn)

for any n ∈ N and p ∈ DC and, additionally, that in family DC does not exist a per-
mutation with minimal convergence class, with regard to inclusion between the con-
vergence classes. Similarly, from the fact that DC ◦DC = DC (see [69, Theorem 2.2])
it results that for each permutation p ∈ DC there exists permutation q ∈ DC such
that

∑

(p) ⊂
∑

(q), in consequence, in family DC does not exist a permutation with
maximal convergence class, with regard to inclusion between the convergence classes.
However, one can find some other, unsolved yet, problems concerning the existence
of effects of the so called countable maximality and, respectively, countable minimal-
ity.10 One can also formulate these problems individually, within each of families DC,
D, DD with regard to the relation of inclusion between the convergence classes of
given permutations.

10 Let < be a binary and transitive relation on the infinite set X. We say that X possesses the effect
of countable maximality if the following two conditions are satisfied

a) in set X there are no elements maximal with regard to relation <;
b) for each x0 ∈ X there exists a sequence {xn}∞n=1 ⊂ X such that

x0 < x1 < x2 < . . .

and there does not exist an upper bound of {xn}∞n=1, i.e. there does not exist y ∈ X such that

xn < y for every n ∈ N.

Similarly we define the effect of countable minimality. For example, in set of rational numbers taken
from the given nonempty open interval included in R with relation “less than” < both effects occur:
countable minimality as well as countable maximality, whereas in family of countable subsets of R
with the inclusion relation the effect of countable maximality does not appear.
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I have proven in paper [69] one more important theorem:

Theorem 8.2. Let p ∈ DC, Ω1 ⊂ D and Ω2 ⊂ DC. If both sets Ω1 and Ω2 are
nonempty and countable then the relations hold

∑

(p) \
⋃

ω∈Ω1

∑

(pω) 6= ∅ and
⋃

ω∈Ω2

∑

(pω) ⊂
∑

(p).

Additionally, I have proven the following fact [78]: let Γ ⊂ D be the countable infinite
family. Then the permutations p ∈ DC and q ∈ DD exist such that

∑

(ϕ) \
⋃

γ∈Γ

∑

(γ) 6= ∅ and
⋂

γ∈Γ

∑

(γ) \
∑

(ϕ) 6= ∅

for every ϕ ∈ {p, q}.

I have also investigated the following problem: let p ∈ P and Q ⊂ P, Q 6= ∅.
Let us assume that for each q ∈ Q we have

∑

(p) \
∑

(q) 6= ∅. I have proven ([69,
Theorem 4.1]) that if Q is a finite set, then also

∑

(p) \
⋃

q∈Q

∑

(q) 6= ∅. As yet, it

is unknown whether the relation holds also when Q is a countable set (I have only
received the partially positive result – Theorem 4.3 in the same paper, for example
when additionally p ∈ DC).

In paper [81] I have also proven that for each permutation p ∈ DD there exists
family Ω(p) ⊂ DD, cardΩ(p) = c satisfying two conditions, similarly like in case of
family Ω(p) ⊂ Ω discussed above (see Theorem 4.5 and Remark 4.6 in [81]). Analyzing
proof of this theorem I have noticed that if we assume that p is the weakly divergent
permutation, then the appropriate family Ω(p) is created from the weakly divergent
permutations as well. This assertion remains true also if p is the strongly divergent
permutation (in proof of this case some additional assumptions must be used). One
should also mention that the received here family Ω(p) additionally fulfils condition
(for each q ∈ Ω(p)):

∑

(q) \

(

∑

(p) ∪
⋃

ϕ∈Ω(p)

ϕ 6=q

∑

(ϕ)

)

6= ∅.

In paper [69, Theorem 5.1] I have proven the theorem dual to the above theorem
concerning the restriction of convergence class of the given divergent permutation
p. I have shown that for each permutation p ∈ D there exists family Φ(p) ⊂ DC,
cardΦ(p) = c, such that

⋃

ϕ∈Φ(p)

∑

(pϕ) ⊂
∑

(p)

and each of families Φ(p) and {p} ◦ Φ(p) is finitely internally incomparable.11

11 We say that set Φ ⊂ P is finitely internally incomparable if for each finite set F ⊂ Φ, F 6= ∅ the
following relations hold

(

⋂

f∈F

∑

(f)

)

\

(

⋃

ϕ∈Φ\F

∑

(ϕ)

)

6= ∅ and

(

⋂

ϕ∈Φ\F

∑

(ϕ)

)

\

(

⋃

f∈F

∑

(f)

)

6= ∅.
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I have also given an additional condition which should be satisfied by permutation
p so that it would be sufficient to construct family Ψ(p) ⊂ DD with cardΨ(p) = c

fulfilling the same conditions as family Φ(p). Slight modification of these conditions
would ensure the weak divergence of p and permutations belonging to Ψ(p) ∪ ({p} ◦
Ψ(p)).

Remark 8.3. We say that nonempty family T ⊂ D is totally internally incomparable
if for every nonempty S ⊂ T the relation holds

⋂

s∈S

∑

(s) \
⋃

t∈T\S

∑

(t) 6= ∅.

I have also proven that if the nonempty finite or countable family T ⊂ D is totally
internally incomparable, then there exist permutations p ∈ DD \ T and q ∈ DC \ T
such that the sets {p} ∪ T and {q} ∪ T are totally internally incomparable as well. It
means that there do not exist the maximal, with regard to inclusion, countable sets
of permutations totally internally incomparable (it will be the subject of separate
publication [78]). Problem is as follows: does it exist the family of countable sets
T ⊂ D totally internally incomparable which with respect to the inclusion relation
between convergence classes possesses the effect of countable maximality?

Problem of the convergence classes is completed by the concept of Levi classes
discussed in papers [23, 57].

9. On some equivalence relation and topologies defined on

family P

Let me introduce now some equivalence relation on P, equivalence classes of which
strictly fit in all the previously distinguished subfamilies P. First we assign to per-
mutations p, q ∈ P the quasi-metric

d(p, q) := lim sup
n→∞

{|p(n) − q(n)|}.

Next we define the mentioned equivalence relation ̺d on P by condition

p̺dq ⇔ d(p, q) <∞.

The following important fact, concerning the equivalence class [p]̺d
under ̺d of any

p ∈ P, holds:

Theorem 9.1. If p ∈ A, then [p]̺d
⊂ A, for each A ∈ {CC,C,CD,DC,S,DD, I}.

Presented theorems and ideas are well completed by considerations from paper [12]
(see also [28, 36, 50]).

The nonmetrizable topologies on P were defined by Steven G. Krantz (well known
authority on the several complex variables) and Jeffrey D. Mcneal in [33, Section 4].
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In contrast to some standard metric topologies on P (for example, Baire’s metric
and Fréchet’s metric, however we note that these both metrics are equivalent on P)
were discussed by many authors:

(1) R.P. Agnew in [1],
(2) F.A. Talaljan in [58],
(3) L. Drewnowski in [19],
(4) R.G. Bilyeu, R.R. Kallman and P.W. Lewis in [4] – this paper is strongly con-

nected with the subject of presented monograph since it solves some problem,
introduced by Kac and Zygmund, about the category of the set of rearrangements
making the given Fourier series divergent almost everywhere. It is related to Kol-
mogorov’s problem “that there exists an L2– Fourier series such that some rear-
rangement of it diverges almost everywhere”, proved by Zahorski. Prof. W ladys law
Wilczyński writes about this as well in his paper “Zygmunt Zahorski and contem-
porary real analysis” included in this monograph,

(5) H. Miller and E. Özturk in [36],
(6) M. Bhaskara Rao, K.P.S. Bashkara Rao and B.V. Rao in [3], where the category

aspect of family C is especially distinguished,
(7) and at last by J. Červeňanský and T. Šalát in [10] and T. Šalát in [48] where the

authors applied the concept of the porosity of sets for making more precise and
completing the results on P for Fréchet’s metric proved by the other authors. See
also paper [17] by M. Dindoš, I. Martǐsovitš and T. Šalát.

10. Outline of the history of research on the convergent and

divergent permutations

1890 – Emil Borel in paper [8] gave the first description of convergent permutations
(of the analytical-combinatoric nature). Today we could say that this description
does not satisfy the expectations, however we owe to this paper the alternative def-
inition of convergent permutations – the borelian permutations. From the private
correspondence of Z. Sawoń (1989) I got to know that problems concerning the
borelian permutations were investigated by Professor S. Mazur and participants
of his workshop on the Warsaw University in the 1960’s. However the elaborated
results have never been published.

1946 – F.W. Levi in paper [35] gave the first fully combinatoric description of
convergent permutations and considered the problems continued afterwards by
Stout [57], Tusnády [59] and Gerencser [23] (resulted, among others, in introduc-
ing the so called Levi classes. For the contrast, there is distinguished in literature
the Lévy group G ⊂ P which is tightly linked to the notion of asymptotic density
and was discussed, for example, by Sleziak and Ziman [54], Blümlinger [5] and
Obata [41, 42, 6], Nathanson and Parikh [40].) Stout [57] proved also that p ∈ P

rearranges every alternating real series
∑

an onto convergent series
∑

ap(n) if and

only if p possesses finite balans, i.e. if the sequence

{

n
∑

k=1

(−1)p(k)
}∞

n=1

is bounded.
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1951 – as a matter of fact probably already in the 1940’s, N. Bourbaki [9] (more
precisely, some of his collaborators - however I do not know which one exactly)
presented the next combinatoric characterization of convergent permutations:
permutation p ∈ P is convergent if and only if there exists constant c = c(p) ∈ N

such that the set p([1, n] ∩ N) is a union of at most c msi for every n ∈ N. This
characterization is at present the most common characterization of convergent
permutations and it is most often attributed to R.P. Agnew!

1955 – R.P. Agnew’s paper [2] appeared in which the above given characterization of
convergent permutations was presented. One should suppose that Agnew was not
aware of the fact that his characterization has been published earlier in Bourbaki’s
monograph [9].

1946 – Russian mathematician A.S. Kronrod published very important paper [34]
(presented by Mienszov). Let us emphasize the fact that because of the time of
this publication (right after the Second World War) the paper was completely
unknown by mathematicians from the other side of the Iron Curtain (and it
is actually happening till the present time). Kronrod introduced and discussed
for the first time the families C, D, CC, DC, CD, DD, P \ S (Kronrod used
different terminology and notations than I am using). Important is that Kronrod
gave the combinatoric characterization of divergent permutations which is dual to
the Bourbaki-Agnew’s combinatoric characterization of convergent permutations.
Kronrod gave also the example of permutation p ∈ DD ∩ S and he proved the
following relations: C ◦ C ⊂ C, C−1 ◦ C−1 ⊂ C−1 and C ◦ S = S ◦ C−1 = P.

Let me notice that we obtain from there the inclusion P \ S ⊂ S ◦ DC which
leads to the conclusion that for every conditionally convergent real series

∑

an
there exists a permutation p ∈ DC such that the series

∑

ap(n) is divergent.
Kronrod investigated as well the generalizations of the Riemann Derangement
Theorem and the Steinitz Theorem (restricted only to the complex series, see
monograph [32] and paper [24]). Main point of these generalizations consisted in
selecting the respective permutation from the family C2 (= DC ◦ CD = C−1 ◦ C).
See also papers motivated by these Kronrod’s results [45, 66, 67, 63].
I would like to mention that the Kronrod’s paper was introduced to me in the
90’s by means of the Jasek’s survey paper [30], very important paper in historical
meaning for the theory of series. Let as recall that Jasek initiated the new topic
in research on the rearrangements of scalar and complex series, which concerned
the characterizations of permutations p ∈ P such that

lim
n→∞

n
∑

k=1

(ap(k) − ak) = 0

for every real series
∑

ak with ak → 0 for k → ∞. Solutions of this problem can
be found in papers [13, 14, 15, 16] of P.H. Diananda. More information concerning
the mathematical creations of B. Jasek is given in [27].

1977 – Pleasants [43, 44] showed that G 6= P. From this it results immediately that
S 6= G because S is the algebraically big subset of P. Moreover, in [77] we proved
the following fact.
If we fix the increasing sequence {nk}∞k=0 of natural numbers such that n0 = 1
and
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lim sup(nk+1 − nk) = ∞, (2)

then the family G = G ({nk}∞k=0) of permutations p ∈ P, such that permutation
p maps each interval [nk−1, nk), k = 1, 2, ..., onto itself, satisfies the following
conditions:

– it is a subgroup of P,
– G ∩D = G ∩D(1) (the remaining elements from G belong to C),
– G ⊂ S,
– G ∩ X 6= ∅ for each X ∈ {CC,CD,DC,DD},
– G \ G 6= ∅ (essential generalization of Pleasants’s result),
– if lim

k→∞
(nk+1 − nk) = ∞ and lim

k→∞

nk+1

nk
= 1 then G is a subgroup of the Lévy

group (see [41]).
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